Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells

Author:

Aravani Dimitra,Foote Kirsty,Figg Nichola,Finigan Alison,Uryga Anna,Clarke Murray,Bennett MartinORCID

Abstract

Abstract Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown. We examined the consequences of VSMC apoptosis after activating extrinsic and intrinsic death pathways. VSMCs undergoing apoptosis through Fas/CD95 or the protein kinase inhibitor staurosporine transcriptionally activated interleukin 6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), leading to their secretion. Apoptosis induced activation of p38MAPK, JNK, and Akt, but neither p38 and JNK activation nor IL-6 or GM-CSF induction required caspase cleavage. IL-6 induction depended upon p38 activity, while Fas-induced GM-CSF expression required p38 and JNK. Conditioned media from apoptotic VSMCs induced VSMC apoptosis in vitro, and IL-6 and GM-CSF acted as pro-survival factors for AIA. VSMC apoptosis was studied in vivo using SM22α-DTR mice that express the diphtheria toxin receptor in VSMCs only. DT administration induced VSMC apoptosis and VSMC proliferation, and also signficantly induced IL-6 and GM-CSF. We conclude that VSMC apoptosis activates multiple caspase-independent intracellular signaling cascades, leading to release of soluble cytokines involved in regulation of both cell proliferation and apoptosis. VSMC AICP may ameliorate while AIA may amplify the effects of pro-apoptotic stimuli in vessel remodeling and disease.

Funder

British Heart Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Biochemistry (medical),Cell Biology,Clinical Biochemistry,Pharmaceutical Science,Pharmacology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3