Smooth Muscle Cell Apoptosis Promotes Vessel Remodeling and Repair via Activation of Cell Migration, Proliferation, and Collagen Synthesis

Author:

Yu Haixiang1,Clarke Murray C.H.1,Figg Nichola1,Littlewood Trevor D.1,Bennett Martin R.1

Affiliation:

1. From the Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.

Abstract

Objective— Although vascular smooth muscle cell (VSMC) apoptosis occurs after vessel injury and during remodeling, the direct role of VSMC death in determining final vessel structure is unclear. We sought to determine the role of VSMC apoptosis in vessel remodeling, medial repair, and neointima formation and to identify the mediators involved. Methods and Results— The left common carotid artery was ligated in SM22α-human diphtheria toxin receptor mice, in which diphtheria toxin treatment selectively induces VSMC apoptosis. Apoptosis induced from day 7 to day 14 after ligation significantly increased neointimal and medial areas, cell proliferation, migration, and vessel size. Neointima formation depended on VSMCs, as VSMC depletion before ligation significantly reduced neointimal area and cellularity. In culture, conditioned media from apoptotic VSMCs promoted VSMC migration, proliferation, and collagen synthesis. Interleukin-6 (IL-6) secretion increased 5-fold and IL-1α 1.5-fold after apoptosis, whereas IL-6 inhibition negated the effect of apoptotic VSMC supernatants on VSMC migration, proliferation, and matrix synthesis. Conclusion— Signaling from apoptotic VSMCs directly promotes vessel remodeling, medial repair, and neointima formation after flow reduction. Although lumen size appears to depend on flow, VSMC apoptosis is an important determinant of vessel, medial, and neointimal size after flow reduction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference32 articles.

1. Compensatory Enlargement of Human Atherosclerotic Coronary Arteries

2. Remodeling of Coronary Arteries in Human and Nonhuman Primates

3. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis

4. Monocyte adhesion and changes in endothelial cell number, morphology, and F-actin distribution elicited by low shear stress in vivo;Walpola PL;Am J Pathol,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3