Scaling up stochastic gradient descent for non-convex optimisation

Author:

Mohamad Saad,Alamri Hamad,Bouchachia AbdelhamidORCID

Abstract

AbstractStochastic gradient descent (SGD) is a widely adopted iterative method for optimizing differentiable objective functions. In this paper, we propose and discuss a novel approach to scale up SGD in applications involving non-convex functions and large datasets. We address the bottleneck problem arising when using both shared and distributed memory. Typically, the former is bounded by limited computation resources and bandwidth whereas the latter suffers from communication overheads. We propose a unified distributed and parallel implementation of SGD (named DPSGD) that relies on both asynchronous distribution and lock-free parallelism. By combining two strategies into a unified framework, DPSGD is able to strike a better trade-off between local computation and communication. The convergence properties of DPSGD are studied for non-convex problems such as those arising in statistical modelling and machine learning. Our theoretical analysis shows that DPSGD leads to speed-up with respect to the number of cores and number of workers while guaranteeing an asymptotic convergence rate of $$O(1/\sqrt{T})$$ O ( 1 / T ) given that the number of cores is bounded by $$T^{1/4}$$ T 1 / 4 and the number of workers is bounded by $$T^{1/2}$$ T 1 / 2 where T is the number of iterations. The potential gains that can be achieved by DPSGD are demonstrated empirically on a stochastic variational inference problem (Latent Dirichlet Allocation) and on a deep reinforcement learning (DRL) problem (advantage actor critic - A2C) resulting in two algorithms: DPSVI and HSA2C. Empirical results validate our theoretical findings. Comparative studies are conducted to show the performance of the proposed DPSGD against the state-of-the-art DRL algorithms.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference77 articles.

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). Tensorflow: A system for large-scale machine learning. OSDI, 16, 265–283.

2. Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (2007). An application of reinforcement learning to aerobatic helicopter flight. In Advances in neural information processing systems (pp. 1–8).

3. Adamski, I., Adamski, R., Grel, T., Jędrych, A., Kaczmarek, K., & Michalewski, H. (2018). Distributed deep reinforcement learning: Learn how to play atari games in 21 minutes. arXiv preprint arXiv:1801.02852.

4. Adamski, R., Grel, T., Klimek, M., & Michalewski, H. (2017). Atari games and intel processors. Workshop on Computer Games (pp. 1–18). Springer.

5. Agarwal, A., & Duchi, J.C. (2011). Distributed delayed stochastic optimization. In Neural Information Processing Systems.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3