1. Deep Bench (2016). https://github.com/baidu-research/DeepBench
2. Intel Xeon Phi delivers competitive performance for deep learning—and getting better fast, December 2016. https://software.intel.com/en-us/articles/intel-xeon-phi-delivers-competitive-performance-for-deep-learning-and-getting-better-fast
3. Caffe Optimized for Intel Architecture: Applying modern code techniques, February 2017. https://software.intel.com/en-us/articles/caffe-optimized-for-intel-architecture-applying-modern-code-techniques
4. FALCON Library: Fast image convolution in neural networks on Intel architecture, February 2017. https://colfaxresearch.com/falcon-library/
5. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/ , software available from tensorflow.org