1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). Software available from
https://www.tensorflow.org/
2. Adamski, R., Grel, T., Klimek, M., Michalewski, H.: Atari games and intel processors. CoRR abs/1705.06936 (2017)
3. Aji, A.F., Heafield, K.: Sparse communication for distributed gradient descent. CoRR abs/1704.05021 (2017)
4. Alistarh, D., Li, J., Tomioka, R., Vojnovic, M.: QSGD: Randomized quantization for communication-optimal stochastic gradient descent. CoRR abs/1610.02132 (2016)
5. Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz, J.: GA3C: GPU-based A3C for deep reinforcement learning. CoRR abs/1611.06256 (2016)