State-of-the-Art Segmentation Techniques and Future Directions for Multiple Sclerosis Brain Lesions
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Link
https://link.springer.com/content/pdf/10.1007/s11831-020-09403-7.pdf
Reference145 articles.
1. Roy S, Bhattacharyya D, Bandyopadhyay SK, Kim TH (2017) An effective method for computerized prediction and segmentation of multiple sclerosis lesions in brain MRI. Comput Methods Prog Biomed 140:307–320
2. Alshayeji MH, Al-Rousan M, Ellethy H (2017) An efficient multiple sclerosis segmentation and detection system using neural networks. Comput Electr Eng 71:191–205
3. Zhao Y, Guo S, Luo M, Shi X, Bilello M, Zhang S, Li S (2017) A level set method for multiple sclerosis lesion segmentation. Magn Reson Imaging 49:94–100
4. Aslani S, Dayan M, Storelli L, Filippi M, Murino V, Rocca MA, Sona D (2018) Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. NeuroImage 196:1–15
5. Birenbaum A, Greenspan H (2017) Multi-view longitudinal CNultiple sclerosis lesion segmentation. Eng Appl Artif Intell 65:111–118
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Conflunet: Improving Confluent Lesion Identification In Multiple Sclerosis With Instance Segmentation;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27
2. Assessing robustness and generalization of a deep neural network for brain MS lesion segmentation on real-world data;European Radiology;2023-08-31
3. BIANCA‐MS: An optimized tool for automated multiple sclerosis lesion segmentation;Human Brain Mapping;2023-08-02
4. Toward more accurate diagnosis of multiple sclerosis: Automated lesion segmentation in brain magnetic resonance image using modified U‐Net model;International Journal of Imaging Systems and Technology;2023-07-28
5. Scanner agnostic large-scale evaluation of MS lesion delineation tool for clinical MRI;Frontiers in Neuroscience;2023-05-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3