BIANCA‐MS: An optimized tool for automated multiple sclerosis lesion segmentation

Author:

Gentile Giordano12ORCID,Jenkinson Mark345ORCID,Griffanti Ludovica36ORCID,Luchetti Ludovico1,Leoncini Matteo12,Inderyas Maira12,Mortilla Marzia7,Cortese Rosa1ORCID,De Stefano Nicola1ORCID,Battaglini Marco12ORCID

Affiliation:

1. Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy

2. SIENA Imaging SRL Siena Italy

3. Welcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical Neurosciences University of Oxford, John Radcliffe Hospital Oxford UK

4. Australian Institute of Machine Learning (AIML), School of Computer and Mathematical Sciences University of Adelaide Adelaide South Australia Australia

5. South Australian Health and Medical Research Institute (SAHMRI) Adelaide South Australia Australia

6. Welcome Centre for Integrative Neuroimaging (WIN), OHBA, Department of Psychiatry University of Oxford, Warneford Hospital Oxford UK

7. Anna Meyer Children's University Hospital Florence Italy

Abstract

AbstractIn this work we present BIANCA‐MS, a novel tool for brain white matter lesion segmentation in multiple sclerosis (MS), able to generalize across both the wide spectrum of MRI acquisition protocols and the heterogeneity of manually labeled data. BIANCA‐MS is based on the original version of BIANCA and implements two innovative elements: a harmonized setting, tested under different MRI protocols, which avoids the need to further tune algorithm parameters to each dataset; and a cleaning step developed to improve consistency in automated and manual segmentations, thus reducing unwanted variability in output segmentations and validation data. BIANCA‐MS was tested on three datasets, acquired with different MRI protocols. First, we compared BIANCA‐MS to other widely used tools. Second, we tested how BIANCA‐MS performs in separate datasets. Finally, we evaluated BIANCA‐MS performance on a pooled dataset where all MRI data were merged. We calculated the overlap using the DICE spatial similarity index (SI) as well as the number of false positive/negative clusters (nFPC/nFNC) in comparison to the manual masks processed with the cleaning step. BIANCA‐MS clearly outperformed other available tools in both high‐ and low‐resolution images and provided comparable performance across different scanning protocols, sets of modalities and image resolutions. BIANCA‐MS performance on the pooled dataset (SI: 0.72 ± 0.25, nFPC: 13 ± 11, nFNC: 4 ± 8) were comparable to those achieved on each individual dataset (median across datasets SI: 0.72 ± 0.28, nFPC: 14 ± 11, nFNC: 4 ± 8). Our findings suggest that BIANCA‐MS is a robust and accurate approach for automated MS lesion segmentation.

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3