Assessment and application of wavelet-based optical flow velocimetry (wOFV) to wall-bounded turbulent flows

Author:

Nicolas Alexander,Zentgraf Florian,Linne Mark,Dreizler Andreas,Peterson Brian

Abstract

AbstractThe performance of a wavelet-based optical flow velocimetry (wOFV) algorithm in extracting high accuracy and high-resolution velocity fields from tracer particle images in wall-bounded turbulent flows is assessed. wOFV is first evaluated using synthetic particle images generated from a channel flow DNS of a turbulent boundary layer. The sensitivity of wOFV to the regularization parameter ($$\lambda$$ λ ) is quantified and results are compared to cross-correlation-based PIV. Results on synthetic particle images indicated different sensitivity to under-regularization or over-regularization depending on which region of the boundary layer is being analyzed. Nonetheless, tests on synthetic data revealed that wOFV can modestly outperform PIV in vector accuracy across a broad $$\lambda$$ λ range. wOFV showed clear advantages over PIV in resolving the viscous sublayer and obtaining highly accurate estimates of the wall shear stress and thus normalizing boundary layer variables. wOFV was also applied to experimental data of a developing turbulent boundary layer. Overall, wOFV revealed good agreement with both PIV and a combined PIV + PTV method. However, wOFV was able to successfully resolve the wall shear stress and correctly normalize the boundary layer streamwise velocity to wall units where PIV and PIV + PTV showed larger deviations. Analysis of the turbulent velocity fluctuations revealed spurious results for PIV in close proximity to the wall, leading to significantly exaggerated and non-physical turbulence intensity in the viscous sublayer region. PIV + PTV showed only a minor improvement in this aspect. wOFV did not exhibit this same effect, revealing that it is more accurate in capturing small-scale turbulent motion in the vicinity of boundaries. The enhanced vector resolution of wOFV enabled improved estimation of instantaneous derivative quantities and intricate flow structure both closer to the wall and more accurately than the other velocimetry methods. These aspects show that, within a reasonable $$\lambda$$ λ range that can be verified using physical principles, wOFV can provide improvements in diagnostics capability in resolving turbulent motion occurring in the vicinity of physical boundaries. Graphical abstract

Funder

European Research Council

Engineering and Physical Sciences Research Council

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3