Evaluation of seedless wavelet-based optical flow velocimetry for schlieren images

Author:

Chen Mingjia1ORCID,Zhao Zhixin1ORCID,Hou Yuchen1ORCID,Zhu Jiajian2ORCID,Sun Mingbo2ORCID,Zhou Bo1ORCID

Affiliation:

1. Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech) 1 , Shenzhen 518055, China

2. Science and Technology on Scramjet Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology 2 , Changsha 410073, China

Abstract

In harsh flow environments, traditional particle-based velocimetry methods face challenges. This study explores the use of seedless schlieren images for velocimetry through a novel algorithm, namely, wavelet-based optical flow velocimetry (wOFV). Various data term constraints for wOFV were examined. It is found that the data term derived from the integrated continuity equation (ICE) outperformed the conventional displaced frame difference constraint and the schlieren-tailored constraints (SE and SSE). Evaluation based on the root mean square error (RMSE) and turbulence energy spectrum (TES) reveals that the choice of wavelet becomes insignificant for the optimal estimated velocity field when the wavelet support length is sufficiently long. In addition, the implementation of a proper truncation in wOFV shows little dependence of the RMSE on the weighting coefficient, therefore alleviating the uncertainty associated with selecting an appropriate weighting coefficient. It is found that the retrieved flow field from schlieren images approximates a down-sampled result based on available structural scales in images. Considering the prevalence of under-resolved velocity field in practical applications, schlieren-based wOFV offers a reasonable alternative to particle-based velocimetry, particularly in harsh flow environments.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3