Author:
Duhr Claude,Porkert Franziska
Abstract
Abstract
We show that all Feynman integrals in two Euclidean dimensions with massless propagators and arbitrary non-integer propagator powers can be expressed in terms of single-valued analogues of Aomoto-Gelfand hypergeometric functions. The latter can themselves be written as bilinears of hypergeometric functions, with coefficients that are intersection numbers in a twisted homology group. As an application, we show that all one-loop integrals in two dimensions with massless propagators can be written in terms of Lauricella $$ {F}_D^{(r)} $$
F
D
r
functions, while the L-loop ladder integrals are related to the generalised hypergeometric L+1FL functions.
Publisher
Springer Science and Business Media LLC
Reference73 articles.
1. S. Weinzierl, Feynman Integrals, arXiv:2201.03593 [https://doi.org/10.1007/978-3-030-99558-4] [INSPIRE].
2. S. Abreu, R. Britto and C. Duhr, The SAGEX review on scattering amplitudes Chapter 3: Mathematical structures in Feynman integrals, J. Phys. A 55 (2022) 443004 [arXiv:2203.13014] [INSPIRE].
3. J.L. Bourjaily et al., Functions Beyond Multiple Polylogarithms for Precision Collider Physics, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17–26 (2022) [arXiv:2203.07088] [INSPIRE].
4. F. Brown and O. Schnetz, A K3 in ϕ4, Duke Math. J. 161 (2012) 1817 [arXiv:1006.4064] [INSPIRE].
5. S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via higher normal functions, Compos. Math. 151 (2015) 2329 [arXiv:1406.2664] [INSPIRE].
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献