A Feynman integral via higher normal functions

Author:

Bloch Spencer,Kerr Matt,Vanhove Pierre

Abstract

We study the Feynman integral for the three-banana graph defined as the scalar two-point self-energy at three-loop order. The Feynman integral is evaluated for all identical internal masses in two space-time dimensions. Two calculations are given for the Feynman integral: one based on an interpretation of the integral as an inhomogeneous solution of a classical Picard–Fuchs differential equation, and the other using arithmetic algebraic geometry, motivic cohomology, and Eisenstein series. Both methods use the rather special fact that the Feynman integral is a family of regulator periods associated to a family of$K3$surfaces. We show that the integral is given by a sum of elliptic trilogarithms evaluated at sixth roots of unity. This elliptic trilogarithm value is related to the regulator of a class in the motivic cohomology of the$K3$family. We prove a conjecture by David Broadhurst which states that at a special kinematical point the Feynman integral is given by a critical value of the Hasse–Weil$L$-function of the$K3$surface. This result is shown to be a particular case of Deligne’s conjectures relating values of$L$-functions inside the critical strip to periods.

Publisher

Wiley

Subject

Algebra and Number Theory

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytic and Numerical Approaches for Depictive 3-Loop Integrals Using Sector Decomposition;Progress of Theoretical and Experimental Physics;2024-08

2. Loops in de Sitter space;Journal of High Energy Physics;2024-07-22

3. Geometry from integrability: multi-leg fishnet integrals in two dimensions;Journal of High Energy Physics;2024-07-02

4. Algorithm for differential equations for Feynman integrals in general dimensions;Letters in Mathematical Physics;2024-06-26

5. Motivic Geometry of two-Loop Feynman Integrals;The Quarterly Journal of Mathematics;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3