Abstract
Abstract
We generalise the geometric analysis of square fishnet integrals in two dimensions to the case of hexagonal fishnets with three-point vertices. Our results support the conjecture that fishnet Feynman integrals in two dimensions, together with their associated geometry, are completely fixed by their Yangian and permutation symmetries. As a new feature for the hexagonal fishnets, the star-triangle identity introduces an ambiguity in the graph representation of a given Feynman integral. This translates into a map between different geometric interpretations attached to a graph. We demonstrate explicitly how these fishnet integrals can be understood as Calabi-Yau varieties, whose Picard-Fuchs ideals are generated by the Yangian over the conformal algebra. In analogy to elliptic curves, which represent the simplest examples of fishnet integrals with four-point vertices, we find that the simplest examples of three-point fishnets correspond to Picard curves with natural generalisations at higher loop orders.
Publisher
Springer Science and Business Media LLC
Reference91 articles.
1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].
2. N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
3. D. Bombardelli et al., An integrability primer for the gauge-gravity correspondence: An introduction, J. Phys. A 49 (2016) 320301 [arXiv:1606.02945] [INSPIRE].
4. V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254 [INSPIRE].
5. V.G. Drinfeld, Quantum groups, Zap. Nauchn. Semin. 155 (1986) 18 [INSPIRE].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献