A machine learning model based on readers’ characteristics to predict their performances in reading screening mammograms

Author:

Gandomkar ZibaORCID,Lewis Sarah J.,Li Tong,Ekpo Ernest U.,Brennan Patrick C.

Abstract

Abstract Objectives Proposing a machine learning model to predict readers’ performances, as measured by the area under the receiver operating characteristics curve (AUC) and lesion sensitivity, using the readers’ characteristics. Methods Data were collected from 905 radiologists and breast physicians who completed at least one case-set of 60 mammographic images containing 40 normal and 20 biopsy-proven cancer cases. Nine different case-sets were available. Using a questionnaire, we collected radiologists’ demographic details, such as reading volume and years of experience. These characteristics along with a case set difficulty measure were fed into two ensemble of regression trees to predict the readers’ AUCs and lesion sensitivities. We calculated the Pearson correlation coefficient between the predicted values by the model and the actual AUC and lesion sensitivity. The usefulness of the model to categorize readers as low and high performers based on different criteria was also evaluated. The performances of the models were evaluated using leave-one-out cross-validation. Results The Pearson correlation coefficient between the predicted AUC and actual one was 0.60 (p < 0.001). The model’s performance for differentiating the reader in the first and fourth quartile based on the AUC values was 0.86 (95% CI 0.83–0.89). The model reached an AUC of 0.91 (95% CI 0.88–0.93) for distinguishing the readers in the first quartile from the fourth one based on the lesion sensitivity. Conclusion A machine learning model can be used to categorize readers as high- or low-performing. Such model could be useful for screening programs for designing a targeted quality assurance and optimizing the double reading practice.

Funder

national health and medical research council

national breast cancer foundation

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Radiology, Nuclear Medicine and imaging,Oncology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3