Using Radiomics-Based Machine Learning to Create Targeted Test Sets to Improve Specific Mammography Reader Cohort Performance: A Feasibility Study

Author:

Tao Xuetong1ORCID,Gandomkar Ziba1ORCID,Li Tong23ORCID,Brennan Patrick C.1,Reed Warren1

Affiliation:

1. Discipline of Medical Imaging Science, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia

2. The Daffodil Centre, The University of Sydney, Sydney, NSW 2006, Australia

3. Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

Mammography interpretation is challenging with high error rates. This study aims to reduce the errors in mammography reading by mapping diagnostic errors against global mammographic characteristics using a radiomics-based machine learning approach. A total of 36 radiologists from cohort A (n = 20) and cohort B (n = 16) read 60 high-density mammographic cases. Radiomic features were extracted from three regions of interest (ROIs), and random forest models were trained to predict diagnostic errors for each cohort. Performance was evaluated using sensitivity, specificity, accuracy, and AUC. The impact of ROI placement and normalization on prediction was investigated. Our approach successfully predicted both the false positive and false negative errors of both cohorts but did not consistently predict location errors. The errors produced by radiologists from cohort B were less predictable compared to those in cohort A. The performance of the models did not show significant improvement after feature normalization, despite the mammograms being produced by different vendors. Our novel radiomics-based machine learning pipeline focusing on global radiomic features could predict false positive and false negative errors. The proposed method can be used to develop group-tailored mammographic educational strategies to help improve future mammography reader performance.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3