Neural Style Transfer as Data Augmentation for Improving COVID-19 Diagnosis Classification

Author:

Hernandez-Cruz NetzahualcoyotlORCID,Cato David,Favela Jesus

Abstract

AbstractCoronavirus disease 2019 (COVID-19) has accounted for millions of causalities. While it affects not only individuals but also our collective healthcare and economic systems, testing is insufficient and costly hampering efforts to deal with the pandemic. Chest X-rays are routine radiographic imaging tests that are used for the diagnosis of respiratory conditions such as pneumonia and COVID-19. Convolutional neural networks have shown promise to be effective at classifying X-rays for assisting diagnosis of conditions; however, achieving robust performance demanded in most modern medical applications typically requires a large number of samples. While there exist datasets containing thousands of X-ray images of patients with healthy and pneumonia diagnoses, because COVID-19 is such a recent phenomenon, there are relatively few confirmed COVID-19 positive chest X-rays openly available to the research community. In this paper, we demonstrate the effectiveness of cycle-generative adversarial network, commonly used for neural style transfer, as a way to augment COVID-19 negative X-ray images to look like COVID-19 positive images for increasing the number of COVID-19 positive training samples. The statistical results show an increase in the mean macro f1-score over 21% on a one-tailed t score = 2.68 and p value = 0.01 to accept our alternative hypothesis for an $$\alpha = 0.05$$ α = 0.05 . We conclude that this approach, when used in conjunction with standard transfer learning techniques, is effective at improving the performance of COVID-19 classifiers for a variety of common convolutional neural networks.

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3