Deep Layer Aggregation Architectures for Photorealistic Universal Style Transfer

Author:

Dediu Marius1ORCID,Vasile Costin-Emanuel1,Bîră Călin1ORCID

Affiliation:

1. Faculty of Electronics, Telecommunications and Information Technology, Politehnica University of Bucharest, 060042 Bucharest, Romania

Abstract

This paper introduces a deep learning approach to photorealistic universal style transfer that extends the PhotoNet network architecture by adding extra feature-aggregation modules. Given a pair of images representing the content and the reference of style, we augment the state-of-the-art solution mentioned above with deeper aggregation, to better fuse content and style information across the decoding layers. As opposed to the more flexible implementation of PhotoNet (i.e., PhotoNAS), which targets the minimization of inference time, our method aims to achieve better image reconstruction and a more pleasant stylization. We propose several deep layer aggregation architectures to be used as wrappers over PhotoNet, to enhance the stylization and quality of the output image.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference15 articles.

1. An, J., Xiong, H., Luo, J., Huan, J., and Ma, J. (2019). Fast universal style transfer for artistic and photorealistic rendering. arXiv.

2. Sohaliya, G., and Sharma, K. (2021, January 27–29). An Evolution of Style Transfer from Artistic to Photorealistic: A Review. Proceedings of the 2021 Asian Conference on Innovation in Technology (ASIANCON), Pune, India.

3. (2022, November 10). Francis Hsu, University of Illinois at Urbana–Champaign, NeuralStyleTransfer Project. Available online: https://github.com/Francis-Hsu/NeuralStyleTransfer.

4. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, MIT Press. Available online: https://www.deeplearningbook.org/.

5. An, J., Xiong, H., Huan, J., and Luo, J. (2020). Ultrafast Photorealistic Style Transfer via Neural Architecture Search. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3