Collaborative Colorectal Cancer Classification on Highly Class Imbalanced Data Setting via Federated Neural Style Transfer Based Data Augmentation

Author:

Nergiz Mehmet

Abstract

The deep learning algorithms achieved promising results in the computational pathology in recent decade but the high data demand of the deep learning algorithms get stuck in the multi-institutional data collaborations. The federated learning is a novel concept, which proposes to train the models of the different sites collaboratively via an orchestrating server without leaking private data. However, the imbalanced data distributions are challenging for federated learning and result in performance decrease and destabilization. In this study, the federated version of the neural style transfer algorithm, which was offered by Gatys et al. is proposed as a data augmentation method on the highly class imbalanced configuration of Chaoyang colorectal cancer imaging dataset. The proposed method works by firstly selecting characteristic style images and then generating the gram style matrices on the local sites and then transferring them to the other imbalanced sites by not leaking any private data. The proposed method contributed the ACC, F1 Score and AUC results of pure FL by 22.07%, 42.51% and 9.65% using only 20 images for content and 5 images for style. Additionally, the experiments having different content and style numbers achieved the satisfactory and consisting results.

Funder

Dicle University

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3