Diagnosing Coherent Structures in the Convective Boundary Layer by Optimizing Their Vertical Turbulent Scalar Transfer

Author:

Efstathiou Georgios A.ORCID,Thuburn John,Beare Robert J.

Abstract

Abstract A new method is introduced to identify coherent structures in the convective boundary layer, based on optimizing the vertical scalar flux in a two-fluid representation of turbulent motions as simulated by a large-eddy simulation. The new approach partitions the joint frequency distribution (JFD) of the vertical velocity and a transported scalar into coherent structures (fluid 2) and their environment (fluid 1) by maximizing that part of the scalar flux resolved by the mean properties in fluid 2 and fluid 1. The proposed method does not rely on any a priori criteria for the partitioning of the flow nor any pre-assumptions about the shape of the JFD. Different flavours of the optimization approach are examined based on maximizing either the total (fluid 1 $$+$$+ fluid 2) or the fluid-2 resolved scalar flux, and on whether all possible partitions or only a subset are considered. These options can result in different derived area fractions for the coherent structures. The properties of coherent structures diagnosed by the optimization method are compared to the conditional sampling of a surface-emitted decaying tracer, in which coherent structures are defined as having tracer perturbation greater than some height-dependent threshold. Results show that the optimization method is able to smoothly define coherent thermal structures in both the horizontal and the vertical. Moreover, optimizing the turbulent transfer by the fluid-2 resolved flux produces very similar coherent structures to the tracer threshold method, especially in terms of their area fraction and updraft velocities. Nonetheless, further analysis of the partitioning of the JFD reveals that, even though the area fraction of coherent structures might be similar, their definition can occupy different quadrants of the JFD, implying the contribution of different physical mechanisms to the turbulent transfer in the boundary layer. Finally, the kinematic and thermodynamic characteristics of the coherent structures are examined based on their definition criteria.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3