Performance of an Eddy Diffusivity–Mass Flux Scheme for Shallow Cumulus Boundary Layers

Author:

Angevine Wayne M.1,Jiang Hongli2,Mauritsen Thorsten3

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

2. NOAA/Earth System Research Laboratory, Boulder, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

3. Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

Abstract Comparisons between single-column (SCM) simulations with the total energy–mass flux boundary layer scheme (TEMF) and large-eddy simulations (LES) are shown for four cases from the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) 2006 field experiment in the vicinity of Houston, Texas. The SCM simulations were run with initial soundings and surface forcing identical to those in the LES, providing a clean comparison with the boundary layer scheme isolated from any other influences. Good agreement is found in the simulated vertical transport and resulting moisture profiles. Notable differences are seen in the cloud base and in the distribution of moisture between the lower and upper cloud layer. By the end of the simulations, TEMF has dried the subcloud layer and moistened the lower cloud layer more than LES. TEMF gives more realistic profiles for shallow cumulus conditions than traditional boundary layer schemes, which have no transport above the dry convective boundary layer. Changes to the formulation and its parameters from previous publications are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3