A Joint Probability Density–Based Decomposition of Turbulence in the Atmospheric Boundary Layer

Author:

Chinita Maria J.1,Matheou Georgios2,Teixeira João3

Affiliation:

1. Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal, and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

2. Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

Abstract In convective flows, vertical turbulent fluxes, covariances between vertical velocity and scalar thermodynamic variables, include contributions from local mixing and large-scale coherent motions, such as updrafts and downdrafts. The relative contribution of these motions to the covariance is important in turbulence parameterizations. However, the flux partition is challenging, especially in regions without convective cloud. A method to decompose the vertical flux based on the corresponding joint probability density function (JPD) is introduced. The JPD-based method partitions the full JPD into a joint Gaussian part and the complement, which represent the local mixing and the large-scale coherent motions, respectively. The coherent part can be further divided into updraft and downdraft parts based on the sign of vertical velocity. The flow decomposition is independent of water condensate (cloud) and can be applied in cloud-free convection, the subcloud layer, and stratiform cloud regions. The method is applied to large-eddy simulation model data of three boundary layers. The results are compared with traditional cloud and cloud-core decompositions and a decaying scalar conditional sampling method. The JPD-based method includes a single free parameter and sensitivity tests show weak dependence on the parameter values. The results of the JPD-based method are somewhat similar to the cloud-core and conditional sampling methods. However, differences in the relative magnitude of the flux decomposition terms suggest that an objective definition of the flow regions is subtle and diagnosed flow properties like updraft characteristics depend on the sampling method. Moreover, the flux decomposition depends on the thermodynamic variable and convection characteristics.

Funder

U.S. Department of Energy

Fundação para a Ciência e a Tecnologia

Univerisity of Connecticut

Jet Propulsion Laboratory

Office of Naval Research

National Aeronautics and Space Administration

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3