Fine-Grained Power Modeling of Multicore Processors Using FFNNs

Author:

Sagi MarkORCID,Vu Doan Nguyen Anh,Fasfous Nael,Wild Thomas,Herkersdorf Andreas

Abstract

AbstractTo minimize power consumption while maximizing performance, today’s multicore processors rely on fine-grained run-time dynamic power information—both in the time domain, e.g. $$\mu $$ μ s to ms, and space domain, e.g. core-level. The state-of-the-art for deriving such power information is mainly based on predetermined power models which use linear modeling techniques to determine the core-performance/core-power relationship. However, with multicore processors becoming ever more complex, linear modeling techniques cannot capture all possible core-performance related power states anymore. Although artificial neural networks (ANN) have been proposed for coarse-grained power modeling of servers with time resolutions in the range of seconds, few works have yet investigated fine-grained ANN-based power modeling. In this paper, we explore feed-forward neural networks (FFNNs) for core-level power modeling with estimation rates in the range of 10 kHz. To achieve a high estimation accuracy while minimizing run-time overhead, we propose a multi-objective-optimization of the neural architecture using NSGA-II with the FFNNs being trained on performance counter and power data from a complex-out-of-order processor architecture. We show that relative power estimation error for the highest accuracy FFNN decreases on average by 7.5% compared to a state-of-the-art linear power modeling approach and decreases by 5.5% compared to a multivariate polynomial regression model. For the FFNNs optimized for both accuracy and overhead, the average error decreases between 4.1% and 6.7% compared to linear modeling while offering significantly lower overhead compared to the highest accuracy FFNN. Furthermore, we propose a micro-controller-based and an accelerator-based implementation for run-time inference of the power modeling FFNN and show that the area overhead is negligible.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3