Unleashing the Power of Artificial Intelligence in Materials Design

Author:

Badini Silvia1,Regondi Stefano1,Pugliese Raffaele1ORCID

Affiliation:

1. NeMO Lab, ASST GOM Niguarda Cà Granda Hospital, 20162 Milan, Italy

Abstract

The integration of artificial intelligence (AI) algorithms in materials design is revolutionizing the field of materials engineering thanks to their power to predict material properties, design de novo materials with enhanced features, and discover new mechanisms beyond intuition. In addition, they can be used to infer complex design principles and identify high-quality candidates more rapidly than trial-and-error experimentation. From this perspective, herein we describe how these tools can enable the acceleration and enrichment of each stage of the discovery cycle of novel materials with optimized properties. We begin by outlining the state-of-the-art AI models in materials design, including machine learning (ML), deep learning, and materials informatics tools. These methodologies enable the extraction of meaningful information from vast amounts of data, enabling researchers to uncover complex correlations and patterns within material properties, structures, and compositions. Next, a comprehensive overview of AI-driven materials design is provided and its potential future prospects are highlighted. By leveraging such AI algorithms, researchers can efficiently search and analyze databases containing a wide range of material properties, enabling the identification of promising candidates for specific applications. This capability has profound implications across various industries, from drug development to energy storage, where materials performance is crucial. Ultimately, AI-based approaches are poised to revolutionize our understanding and design of materials, ushering in a new era of accelerated innovation and advancement.

Publisher

MDPI AG

Subject

General Materials Science

Reference140 articles.

1. Designing a New Material World;Olson;Science,2000

2. Using artificial intelligence to accelerate materials development;Ball;MRS Bull.,2019

3. Discovery and design of self-assembling peptides;Zhang;Interface Focus,2017

4. Accelerating materials discovery using artificial intelligence, high performance computing and robotics;Pitera;Npj Comput. Mater.,2022

5. Data mining-aided materials discovery and optimization;Lu;J. Mater.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3