Abstract
Peptides are ubiquitous in nature and useful in many fields, from agriculture as pesticides, in medicine as antibacterial and antifungal drugs founded in the innate immune systems, to medicinal chemistry as hormones. However, the concept of peptides as materials was not recognized until 1990 when a self-assembling peptide as a repeating segment in a yeast protein was serendipitously discovered. Peptide materials are so called because they have bona fide materials property and are made from simple amino acids with well-ordered nanostructures under physiological conditions. These structures include well-ordered nanofibres, nanotubes and nanovesicles. These peptide materials have been used for: (i) three-dimensional tissue cell cultures of primary cells and stem cells, (ii) three-dimensional tissue printing, (iii) sustained releases of small molecules, growth factors, monoclonal antibody and siRNA, (iv) accelerated wound healing in reparative and regenerative medicine as well as tissue engineering, (v) used to stabilize membrane proteins including difficult G-protein coupled receptors and photosystem I for designing nanobiodevices, (vi) a few self-assembling peptides have been used in human clinical trials for accelerated wound healings in surgical uses and (vii) in human clinical trials for siRNA delivery for treatment of cancers. It is likely that these self-assembling peptides will open doors for more and more diverse uses. The field of self-assembling peptides is growing in a number of directions in areas of materials, synthetic biology, and clinical medicine and beyond.
Subject
Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献