Abstract
AbstractProving and refuting are fundamental aspects of mathematical practice that are intertwined in mathematical activity in which conjectures and proofs are often produced and improved through the back-and-forth transition between attempts to prove and disprove. One aspect underexplored in the education literature is the connection between this activity and the construction by students of knowledge, such as mathematical concepts and theorems, that is new to them. This issue is significant to seeking a better integration of mathematical practice and content, emphasised in curricula in several countries. In this paper, we address this issue by exploring how students generate mathematical knowledge through discovering and handling refutations. We first explicate a model depicting the generation of mathematical knowledge through heuristic refutation (revising conjectures/proofs through discovering and addressing counterexamples) and draw on a model representing different types of abductive reasoning. We employed both models, together with the literature on the teachers’ role in orchestrating whole-class discussion, to analyse a series of classroom lessons involving secondary school students (aged 14–15 years, Grade 9). Our analysis uncovers the process by which the students discovered a counterexample invalidating their proof and then worked via creative abduction where a certain theorem was produced to cope with the counterexample. The paper highlights the roles played by the teacher in supporting the students’ work and the importance of careful task design. One implication is better insight into the form of activity in which students learn mathematical content while engaging in mathematical practice.
Funder
Nihon Gakujutsu Shinkō Kai
Publisher
Springer Science and Business Media LLC
Subject
Education,General Mathematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献