Effect of Ultrafiltered Milk on the Rheological and Microstructure Properties of Cream Cheese Acid Gels

Author:

Wu Qihui,Ong Lydia,Yao Shenggen,Kentish Sandra E,Gras Sally L

Abstract

AbstractThe addition of ultrafiltered (UF) milk retentate is known to impact milk properties during mozzarella and cheddar cheese production, but the effect during cream cheese production is less well understood. Little is known about the impact of UF retentate on the intermediate stages of manufacture, such as protein assembly and the formation of hydrated acid gel structures. Here, milk prepared for cream cheese manufacture using a concentration factor of 2.5 or 5 had a similar particle size distribution to unconcentrated cheese milk after homogenization but increased viscosity and a slower rate of acidification, which could be altered by increasing starter culture concentration. The acid gels formed contained more protein and fat, resulting in a higher storage modulus, firmness, and viscosity. A denser microstructure was observed in acid gels formed with UF retentate addition, and quantitative two- or three-dimensional analysis of confocal images found a greater volume percentage of protein and fat, decreased porosity, and increased coalescence of fat. The mobility of water, as assessed by proton nuclear magnetic resonance, was reduced in the dense UF gel networks. Water movement was partially obstructed, although diffusion was possible between interconnected serum pores. These insights improve our understanding of acid gel formation. They can be used by manufacturers to further optimize the early and intermediate stages of cream cheese production when using concentrated milk to reduce acid whey production and lay the foundation for larger pilot scale studies of intermediate and final cream cheese structure.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3