Flexible Polyurethane Foams: A Comparative Measurement of Toxic Vapors and Other Toxic Emissions in Controlled Combustion Environments of Foams With and Without Fire Retardants

Author:

Blais Matthew,Carpenter Karen

Abstract

Abstract A series of experiments were performed to measure the toxic vapor emissions of fires involving flexible polyurethane foams (FPUF) with and without flame retardants (FR). FPUF were covered with FR and non-FR fabrics to simulate cushion conditions. Testing was performed to both maximize detection of gases in small scale testing and measurement of exposure concentrations in realistic fire conditions in a room sized enclosures. A standard smoke box with load cell, open flame ignition source and Fourier transform infra-red spectrometer (FTIR) fit with a 2 m gas cell was used to monitor gas emission real time during testing with filter samples analyzed for acid gases and chloro-dioxins and furans. An NFPA 286 room was used to measure realistic smoke emissions from three seat furniture mock-ups with non-combustible frames. Oxygen consumption calorimetry, smoke opacity and smoke toxicity were measured during these tests. FTIR and grab sampling were performed during the room fires. Grab sampling using evacuated metal canisters were used to collect combustion gasses at various stages of the fire followed by analysis using EPA method TO-15 indoor air pollutants. In addition chloro-dioxins and furans were measured using a particulate filter collection system. The results of the study indicated that both FR and non-FR FPUF gave very similar results for smoke toxicity and both were less than what would be produced by an equivalent mass of wood. Use of fire barrier materials increased the toxicity of smoke produced from non-FR FPUF due to the creation of oxygen limited conditions. Use of fire barrier materials with FR FPUF would not sustain ignition and ended up producing less toxic smoke for up to 19 kW ignition source.

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science

Reference17 articles.

1. Sundström B (1996) CBUF: fire safety of upholstered furniture—the final report on the CBUF research programme. EUR 16477 EN. European Commission, Measurements and Testing, Brussels

2. Singh H (2009) Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. J Appl Polym Sci 111:1115–1143

3. Neviaser J, Gann R (2004) Evaluation of toxic potency values for smoke from products and materials. Fire Technol 40:177–199

4. Consumer Product Safety Commission (2008) 73 F.R. 11702. 16 CFR Part 1634, Standard for the flammability of residential upholstered furniture; proposed rule. Consumer Product Safety Commission, Bethesda, 4 March 2008

5. Janssens M (2012) Reducing uncertainty of quantifying the burning rate of upholstered furniture, No. 2010-DN-BX-K221. National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. https://www.ncjrs.gov/pdffiles1/nij/grants/239050.pdf. Accessed 1 March 2013

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3