Quantification of Elevated Hydrogen Cyanide (HCN) Concentration Typical in a Residential Fire Environment Using Mid-IR Tunable Diode Laser

Author:

Ghanekar Shruti12ORCID,Horn Gavin P.23ORCID,Kesler Richard M.23ORCID,Rajasegar Rajavasanth1ORCID,Yoo Jihyung4,Lee Tonghun1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA

2. Fire Safety Research Institute, UL Research Institutes, Champaign, IL, USA

3. Illinois Fire Service Institute, University of Illinois Urbana-Champaign, Columbia, MD, USA

4. Department of Automotive Engineering, Hanyang University, South Korea

Abstract

A versatile portable tunable diode laser based measurement system for measuring elevated concentrations of hydrogen cyanide (HCN) in a time-resolved manner is developed for application in the fire environment. The direct absorption tunable diode laser spectroscopy (DA-TDLAS) technique is employed using the R11 absorption line centered at 3345.3 cm−1 (2989.27 nm) in the fundamental C–H stretching band (ν1) of the HCN absorption spectrum. The measurement system is validated using calibration gas of known HCN concentration and the relative uncertainty in measurement of HCN concentration is 4.1% at 1500 ppm. HCN concentration is measured with a sampling frequency of 1 Hz, in gas sampled from 1.5 m, 0.9 m, and 0.3 m heights in the Fireground Exposure Simulator (FES) prop at the University of Illinois Fire Service Institute, Champaign, Illinois. The immediately dangerous to life and health (IDLH) concentration of 50 parts per million (ppm) is exceeded at all the three sampling heights. A maximum concentration of 295 ppm is measured at the 1.5 m height. The HCN measurement system, expanded to measure HCN simultaneously from two sampling locations, is then deployed in two full-scale experiments designed to simulate a realistic residential fire environment at the Delaware County Emergency Services Training Center, Sharon Hill, Pennsylvania.

Funder

Federal Emergency Management Agency

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3