Silicon Seed Priming Combined with Foliar Spray of Sulfur Regulates Photosynthetic and Antioxidant Systems to Confer Drought Tolerance in Maize (Zea mays L.)

Author:

Farman Muhammad,Nawaz FahimORCID,Majeed Sadia,Javeed Hafiz Muhammad Rashad,Ahsan Muhammad,Ahmad Khawaja Shafique,Aurangzaib Muhammad,Bukhari Muhammad Adnan,Shehzad Muhammad Asif,Hussain Muhammad Baqir

Abstract

AbstractThe present study evaluated the effect of silicon (Si) seed priming and sulfur (S) foliar spray on drought tolerance of two contrasting maize hybrids viz. drought tolerant Hi-Corn 11 and susceptible P-1574. The maize seeds were primed with (3 mM Na2SiO3) or without Si (hydropriming) and later sown in pots filled with sandy loam soil. Drought stress (25–30% water holding capacity or WHC) was initiated at cob development stage (V5) for two weeks, whereas the well-watered plants were grown at 65–70% WHC. On appearance of drought symptoms, foliar spray of S was done using 0.5% and 1.0% (NH4)2SO4, whereas water spray was used as a control. The drought-stressed plants were grown for further two weeks at 25–30% WHC before the final harvest. The results showed a marked effect of Si seed priming and foliar S spray on biomass, physiological and enzymatic processes as well as macronutrient concentrations of maize. In comparison to control, the highest increase in leaf relative water content (25%), chlorophyll a content (56%), carotenoids (26%), photosynthetic rate (64%), stomatal conductance (56%) and intercellular CO2 concentration (48%) was observed by Si seed priming + S foliar spray (Si + S) under water deficit conditions. Also, Si + S application stimulated the activity of catalase (45%), guaiacol peroxidase (38%) and superoxide dismutase (55%), and improved NPK concentrations (40–63%) under water limitations. Our results suggest that Si seed priming + foliar spray of S is more effective than the individual application of these nutrients to enhance drought tolerance in maize.

Funder

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3