Droughts and Thermo-Priming Enhance Acclimation to Later Drought and Heat Stress in Maize Seedlings by Improving Leaf Physiological Activity

Author:

Ru Chen1,Hu Xiaotao1,Chen Dianyu1,Wang Wene1

Affiliation:

1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China

Abstract

Early heat and drought priming may increase the plant’s ability to resist later drought and heat stress. However, it remains unclear whether combined heat and drought priming can enhance the acclimation of plants to later combined stress by improving physiological activities. In this study, maize seedlings were first pre-exposed twice to heat, drought, and a combination of stresses followed by recovery, and then subjected to six days of more severe stresses. A considerable reduction in photosynthetic pigment content, stomatal size, and photosynthesis was observed under heat and drought conditions, and the changes in the above indicators were amplified under combined stress conditions. Stress priming improves antioxidant defense and cellular osmoregulation, as indicated by improved superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase activities, as well as elevated soluble sugar (SS) and proline (Pro) contents. Lower superoxide anion and malondialdehyde contents and injury index in the primed seedlings demonstrated the mitigation of oxidative stress. ROC analysis revealed that SOD and POD had considerable reliability in determining that maize seedlings were experiencing heat stress (AUC = 0.941–0.971); GR and SS were capable of accurately monitoring drought stress that was being experienced by plants (AUC = 0.919–0.958); and SOD, GR, and Pro had more capability for detecting the combination of heat and drought stress (AUC = 0.907–0.958). Collectively, the primed seedlings exhibited better performance than the non-primed seedlings, exhibiting stronger stress acclimation supported by an effective antioxidant defense system and osmoregulatory function.

Funder

Xiaotao Hu

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3