Affiliation:
1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
Abstract
Early heat and drought priming may increase the plant’s ability to resist later drought and heat stress. However, it remains unclear whether combined heat and drought priming can enhance the acclimation of plants to later combined stress by improving physiological activities. In this study, maize seedlings were first pre-exposed twice to heat, drought, and a combination of stresses followed by recovery, and then subjected to six days of more severe stresses. A considerable reduction in photosynthetic pigment content, stomatal size, and photosynthesis was observed under heat and drought conditions, and the changes in the above indicators were amplified under combined stress conditions. Stress priming improves antioxidant defense and cellular osmoregulation, as indicated by improved superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase activities, as well as elevated soluble sugar (SS) and proline (Pro) contents. Lower superoxide anion and malondialdehyde contents and injury index in the primed seedlings demonstrated the mitigation of oxidative stress. ROC analysis revealed that SOD and POD had considerable reliability in determining that maize seedlings were experiencing heat stress (AUC = 0.941–0.971); GR and SS were capable of accurately monitoring drought stress that was being experienced by plants (AUC = 0.919–0.958); and SOD, GR, and Pro had more capability for detecting the combination of heat and drought stress (AUC = 0.907–0.958). Collectively, the primed seedlings exhibited better performance than the non-primed seedlings, exhibiting stronger stress acclimation supported by an effective antioxidant defense system and osmoregulatory function.
Subject
Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献