The Effects of a Few Formation Parameters on Porous Silicon Production in HF/HNO3 Using Ag-Assisted Etching and a Comparison with a Stain Etching Method

Author:

Mogoda A. S.,Farag A. R.

Abstract

AbstractIn a solution of HF with HNO3 as an oxidizing agent, silver-catalyzed etching of p-type silicon is made easier. Before immersing in the etchant solution, silver (Ag) was electroless deposited on the p-Si (100) surface. By stain etching in HF/HNO3, a porous silicon layer (PSL) was also produced on p-Si. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM), and X-ray diffraction (XRD) were used to evaluate the properties of the produced PSL. According to the SEM, Ag+ ion at a concentration of 1 × 10−3 M is the optimal concentration for depositing on Si before chemical etching in HF/HNO3, resulting in PSL with uniformly distributed pores. The EIS data showed that coated Si dissolves faster in 22 M HF/0.5 M HNO3 than untreated Si, resulting in the formation of a homogenous PSL of regular round pores, as proven by SEM micrographs. An acceptable electrical circuit model with two-time constants was used to fit the experimental impedance values. Increased concentrations of the etchant HF or the oxidizer HNO3 aid in the dissolution of Si and the rapid development of PS. The AFM analysis revealed that when the etching time increases, the pore width and roughness of the Si surface increase. X-ray spectra diffraction was used to determine the crystallinity of the PSL after various etching times.

Publisher

Springer Science and Business Media LLC

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3