Porous silicon nanostructures: Synthesis, characterization, and their antifungal activity

Author:

Nabil Marwa1,Elnouby Mohamed2,Al-Askar Abdulaziz A.3,Kowalczewski Przemysław Łukasz4,Abdelkhalek Ahmed5,Behiry Said I.6

Affiliation:

1. Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City for Scientific Research and Technology Applications , New Borg El-Arab City , Alexandria , 21934 , Egypt

2. Advanced Technology and New Materials Research Institute, City for Scientific Research and Technology Applications , New Borg El-Arab City , Alexandria , 21934 , Egypt

3. Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455 , Riyadh 11451 , Saudi Arabia

4. Department of Food Technology of Plant Origin, Poznań University of Life Sciences , Poznań , Poland

5. Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications , Alexandria 21934 , Egypt

6. Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University , Alexandria 21531 , Egypt

Abstract

Abstract The use of synthetic pesticides has come under scrutiny, and there has been a subsequent shift toward the investigation of alternative methods for the treatment of plant diseases. One notable advancement in this field is the utilization of porous silicon (PS) powder as a sustainable antifungal agent. The synthesis of PS nanoparticle (PS-NP) powder was carried out using the environmentally friendly ultrasonication process. X-ray powder diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-VIS absorbance, and photoluminescence were some of the methods used to characterize PS-NPs. The different characterization methods revealed the formation of a nanocrystalline structure possessing a cubic Si crystalline quality. The crystal size of PS-NPs, as determined from X-ray diffractometer data, ranges from 36.67 to 52.33 nm. The obtained PS has a high band gap of 3.85 eV and presents a photoluminescence peak at 703 nm. The antifungal activity of the synthesized PS-NPs was assessed against three molecularly characterized fungi, namely Rhizoctonia solani, Fusarium oxysporum, and Botrytis cinerea, which were obtained from tomato plants. The concentration of PS-NPs at 75 µg/mL exhibited the highest enhancement in growth inhibition percentages as compared to the control group. R. solani had the highest inhibition percentage of 82.96%. In conclusion, the encouraging structural properties and antimicrobial capabilities of PS-NPs pave the way for their application across diverse technological industries. To the best of our knowledge, this is the first in vitro study of PS-NPs to evaluate their fungal control efficiency.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3