Understanding Test Modalities of Tire Grip and Laboratory-Road Correlations with Modeling

Author:

Salehi MarziehORCID,Noordermeer Jacques W. M.,Reuvekamp Louis A. E. M.,Blume Anke

Abstract

AbstractThe present study is meant to obtain tribological insight into the interface of a rolling rubber wheel on a counter-surface disk based on the work of the previous study Salehi et al. (Tribol Lett 68(1):37, 2020), in which a new test method was developed to rapidly predict tire grip in a laboratory environment. A Laboratory Abrasion Tester (LAT100) was used and exploited as a tribometer. This opened a new cost- and time-effective horizon for tire material development in a laboratory environment rather than having to test tread compounds by building full-scale tires. The method was validated by a comprehensive study for six different tire tread compositions, by correlating the laboratory data for solid rubber wheels as LAT100 specimens with real tire results in two test modalities: lateral (α) and longitudinal (κ) sweep tests on a dry road. It was demonstrated that the LAT100 can be exploited to simulate the $$\alpha$$ α -sweep tire tests, but not the $$\kappa$$ κ -sweep. The dynamics and physics of a rolling rubber wheel on a counter-surface disk of the LAT100 test step-up are investigated utilizing the renowned physical “brush model” in comparison to full-scale tire tests. The type of test modality leads to different friction mechanisms in the contact patch even at similar test conditions. This is substantiated by recognizing the two regions: stationary and non-stationary, in the contact area which results in different friction components and mechanisms. The behavior of the rolling wheel in lateral and longitudinal movements at the same test conditions is comparable if the contributions of the mentioned regions in the contact area are similar.

Funder

Apollo Tyres Global R&D

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3