Experimental and numerical study of friction and .giffness characteristics of small rolling tires

Author:

van der Steen R.1,Lopez I.2,Nijmeijer H.3

Affiliation:

1. 1Presenter/Corresponding Author. Dynamics and Control, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Electronic mail: R.v.d.Steen@alumnus.tue.nl

2. 2Dynamics and Control, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Electronic mail: I.Lopez@tue.nl

3. 3Dynamics and Control, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Electronic mail: H.Nijmeijer@tue.nl

Abstract

Abstract Virtual testing is nowadays the standard in the design process of new tires. Besides modeling the static response of the tire itself, the dynamics of a rolling tire in contact with the road needs to be incorporated. Due to the uncontrollable environmental conditions and the complex structure of the tires, it is advantageous to use small-scale testing under more controlled conditions. Experimental characterization of frictional properties of rubber compounds is, however, limited due to the necessity of complex measurement systems. In this paper a commercially available laboratory abrasion and skid tester is used to ide.gify both friction and .giffness characteristics of the same rubber compound. The obtained friction properties are implemented in a finite element model of the setup, and different validation steps are presented. Finally, a steady-state transport approach is used to efficiently compute a steady-state solution, which is compared with the experimental results. The numerical results show a good qualitative agreement with the experimental results.

Publisher

The Tire Society

Subject

Polymers and Plastics,Mechanics of Materials,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3