Anomalous Wear Behavior of UHMWPE During Sliding Against CoCrMo Under Varying Cross-Shear and Contact Pressure

Author:

Dreyer Michael J.,Taylor William R.,Wasmer Kilian,Imwinkelried Thomas,Heuberger Roman,Weisse Bernhard,Crockett Rowena

Abstract

AbstractWear of ultra-high-molecular weight polyethylene (UHMWPE) in joint implant applications has been shown to increase with cross-shear (CS, i.e., multidirectional sliding) but decrease with higher contact pressure (CP). Moreover, structural changes, resulting in protrusions, are known to occur to the surface of the pin following multidirectional sliding. However, these phenomena are not yet fully understood. In this study, we simultaneously varied CP and CS to derive an empirical formula for the wear factor as a function of these parameters. The wear factor increased when going from unidirectional sliding to multidirectional sliding but decreased with increasing CP, as has been previously observed. Following these tests, the protrusions on the pin surface were chemically and mechanically characterized to gain insights into both their origin and influence on wear behavior. Micro-FT-IR confirmed that the structures consist of polyethylene, rather than adsorbed, denatured proteins. It also allowed the crystallinity of both the protrusions and unaffected UHMWPE to be estimated, showing a strong positive correlation with the hardness of these different areas on the surface. Time-of-flight secondary-ion mass spectrometry was used to probe the chemistry of the surface and near-surface region and indicated the presence of contamination from the test fluid within the structure. This suggests that the protrusions are formed by the folding of UHMWPE following plastic deformation. It is also suggested that the higher hardness of the protrusions affords some protection of the surface, leading to the observed anomalous behavior, whereby wear increases with decreasing CP. Graphical Abstract

Funder

Empa

Empa - Swiss Federal Laboratories for Materials Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3