Classification of Progressive Wear on a Multi-Directional Pin-on-Disc Tribometer Simulating Conditions in Human Joints-UHMWPE against CoCrMo Using Acoustic Emission and Machine Learning

Author:

Deshpande Pushkar12,Wasmer Kilian1ORCID,Imwinkelried Thomas3,Heuberger Roman3ORCID,Dreyer Michael4ORCID,Weisse Bernhard4ORCID,Crockett Rowena5,Pandiyan Vigneashwara16ORCID

Affiliation:

1. Laboratory for Advanced Materials Processing (LAMP), Empa-Swiss Federal Laboratories for Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland

2. J. Mike Walker Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

3. RMS Foundation, CH-2544 Bettlach, Switzerland

4. Laboratory for Mechanical Systems Engineering, Empa-Swiss Federal Laboratories for Materials Science & Technology, Ueberlandstrasse 129, CH-8600 Dubendorf, Switzerland

5. Surface Science & Coating Technologies, Empa-Swiss Federal Laboratories for Materials Science & Technology, Ueberlandstrasse 129, CH-8600 Dubendorf, Switzerland

6. Additive Manufacturing Group, Advanced Materials Research Center, Technology Innovation Institute (TII), Masdar City, Abu Dhabi P.O. BOX 6263, United Arab Emirates

Abstract

Human joint prostheses experience wear failure due to the complex interactions between Ultra-High-Molecular-Weight Polyethylene (UHMWPE) and Cobalt-Chromium-Molybdenum (CoCrMo). This study uses the wear classification to investigate the gradual and progressive abrasive wear mechanisms in UHMWPE. Pin-on-disc tests were conducted under simulated in vivo conditions, monitoring wear using Acoustic Emission (AE). Two Machine Learning (ML) frameworks were employed for wear classification: manual feature extraction with ML classifiers and a contrastive learning-based Convolutional Neural Network (CNN) with ML classifiers. The CNN-based feature extraction approach achieved superior classification performance (94% to 96%) compared to manual feature extraction (81% to 89%). The ML techniques enable accurate wear classification, aiding in understanding surface states and early failure detection. Real-time monitoring using AE sensors shows promise for interventions and improving prosthetic joint design.

Funder

Empa Internal

Robert Mathys Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3