Harnessing consumer reviews for marketing intelligence: a domain-adapted sentiment classification approach
Author:
Publisher
Springer Science and Business Media LLC
Subject
Information Systems
Link
http://link.springer.com/content/pdf/10.1007/s10257-014-0266-z.pdf
Reference38 articles.
1. Anderson M (2012) Study: 72% of consumers trust online reviews as much as personal recommendations. http://searchengineland.com/study-72-of-consumers-trust-online-reviews-as-much-as-personal-recommendations-114152
2. Apté C, Damerau F, Weiss S (1994) Automated learning of decision rules for text categorization. ACM Trans Inf Syst 12(3):233–251
3. Aue A, Gamon M (2005) Customizing sentiment classifiers to new domains: a case study. Proceedings of the recent advances in natural language processing (RANLP)
4. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. Proceedings of the eleventh annual conference on computational learning theory (COLT’98), pp 92–100
5. Brill E (1994) Some advances in rule-based part of speech tagging. Proceedings of the twelfth national conference on artificial intelligence (AAAI-94), pp 722–727
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Are eBay’s Feedback Ratings Consistent with the Sentiments Embedded in Textual Comments? An Empirical Study;Journal of Theoretical and Applied Electronic Commerce Research;2023-12-15
2. Sentiment Analysis and its Application in Analysing Consumer Behaviour;2023 International Conference on Emerging Techniques in Computational Intelligence (ICETCI);2023-09-21
3. Triangulating Online Brand Reputation, Brand Image, and Brand Identity: An Interdisciplinary Research Approach to Design the Pathways of Online Branding Strategies in Luxury Hospitality;Online Reputation Management in Destination and Hospitality;2023-02-09
4. Passenger intelligence as a competitive opportunity: unsupervised text analytics for discovering airline-specific insights from online reviews;Annals of Operations Research;2023-01-13
5. Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing;Information Systems and e-Business Management;2021-11-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3