Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds

Author:

Nobili FrancescoORCID,Violo Ivan Yuri

Abstract

AbstractWe prove that ifMis a closedn-dimensional Riemannian manifold,$$n \ge 3$$n3, with$$\mathrm{Ric}\ge n-1$$Ricn-1and for which the optimal constant in the critical Sobolev inequality equals the one of then-dimensional sphere$$\mathbb {S}^n$$Sn, thenMis isometric to$$\mathbb {S}^n$$Sn. An almost-rigidity result is also established, saying that if equality is almost achieved, thenMis close in the measure Gromov–Hausdorff sense to a spherical suspension. These statements are obtained in the$$\mathrm {RCD}$$RCD-setting of (possibly non-smooth) metric measure spaces satisfying synthetic lower Ricci curvature bounds. An independent result of our analysis is the characterization of the best constant in the Sobolev inequality on any compact$$\mathrm {CD}$$CDspace, extending to the non-smooth setting a classical result by Aubin. Our arguments are based on a new concentration compactness result for mGH-converging sequences of$$\mathrm {RCD}$$RCDspaces and on a Pólya–Szegő inequality of Euclidean-type in$$\mathrm {CD}$$CDspaces. As an application of the technical tools developed we prove both an existence result for the Yamabe equation and the continuity of the generalized Yamabe constant under measure Gromov–Hausdorff convergence, in the$$\mathrm {RCD}$$RCD-setting.

Funder

University of Jyväskylä

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference99 articles.

1. Akutagawa, K., Carron, G., Mazzeo, R.: The Yamabe problem on stratified spaces. Geom. Funct. Anal. 24, 1039–1079 (2014)

2. Akutagawa, K., Carron, G., Mazzeo, R.: The Yamabe problem on Dirichlet spaces, In: Tsinghua lectures in mathematics, vol. 45 of Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, [2019], pp. 101–122 (2019)

3. Akutagawa, K., Mondello, I.: Non-existence of Yamabe minimizers on singular spheres. arXiv:1909.09367, (2019)

4. Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. Set-Valued Analysis 10, 111–128 (2002). (Calculus of variations, nonsmooth analysis and related topics)

5. Ambrosio, L., Colombo, M., Di Marino, S.: Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, In: Variational methods for evolving objects, vol. 67 of Adv. Stud. Pure Math., Math. Soc. Japan, [Tokyo], pp. 1–58 (2015)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3