Pleijel nodal domain theorem in non-smooth setting

Author:

De Ponti Nicolò,Farinelli Sara,Violo Ivan Yuri

Abstract

We prove the Pleijel theorem in non-collapsed RCD spaces, providing an asymptotic upper bound on the number of nodal domains of Laplacian eigenfunctions. As a consequence, we obtain that the Courant nodal domain theorem holds except at most for a finite number of eigenvalues. More in general, we show that the same result is valid for Neumann (resp. Dirichlet) eigenfunctions on uniform domains (resp. bounded open sets). This is new even in the Euclidean space, where the Pleijel theorem in the Neumann case was open under low boundary-regularity.

Funder

Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni

Publisher

American Mathematical Society (AMS)

Reference93 articles.

1. Carleson-type estimates for 𝑝-harmonic functions and the conformal Martin boundary of John domains in metric measure spaces;Aikawa, Hiroaki;Michigan Math. J.,2005

2. Fine properties of sets of finite perimeter in doubling metric measure spaces;Ambrosio, Luigi;Set-Valued Anal.,2002

3. Calculus, heat flow and curvature-dimension bounds in metric measure spaces;Ambrosio, Luigi,2018

4. Equivalent definitions of 𝐵𝑉 space and of total variation on metric measure spaces;Ambrosio, Luigi;J. Funct. Anal.,2014

5. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces;Ambrosio, Luigi;Rev. Mat. Iberoam.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3