Abstract
AbstractIn their seminal work, Cordero-Erausquin, Nazaret and Villani (Adv Math 182(2):307-332, 2004) proved sharp Sobolev inequalities in Euclidean spaces via Optimal Transport, raising the question whether their approach is powerful enough to produce sharp Sobolev inequalities also on Riemannian manifolds. By using $$L^1$$
L
1
-optimal transport approach, the compact case has been successfully treated by Cavalletti and Mondino (Geom Topol 21:603-645, 2017), even on metric measure spaces verifying the synthetic lower Ricci curvature bound. In the present paper we affirmatively answer the above question for noncompact Riemannian manifolds with non-negative Ricci curvature; namely, by using Optimal Transport theory with quadratic distance cost, sharp $$L^p$$
L
p
-Sobolev and $$L^p$$
L
p
-logarithmic Sobolev inequalities (both for $$p>1$$
p
>
1
and $$p=1$$
p
=
1
) are established, where the sharp constants contain the asymptotic volume ratio arising from precise asymptotic properties of the Talentian and Gaussian bubbles, respectively. As a byproduct, we give an alternative, elementary proof to the main result of do Carmo and Xia (Math 140:818-826, 2004) and subsequent results, concerning the quantitative volume non-collapsing estimates on Riemannian manifolds with non-negative Ricci curvature that support Sobolev inequalities.
Funder
Alkalmazott Informatikai és Alkalmazott Matematikai Doktori Iskola, Óbudai Egyetem
Publisher
Springer Science and Business Media LLC