On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach

Author:

Bee MarcoORCID

Abstract

AbstractMany stochastic models in economics and finance are described by distributions with a lognormal body. Testing for a possible Pareto tail and estimating the parameters of the Pareto distribution in these models is an important topic. Although the problem has been extensively studied in the literature, most applications are characterized by some weaknesses. We propose a method that exploits all the available information by taking into account the data generating process of the whole population. After estimating a lognormal–Pareto mixture with a known threshold via the EM algorithm, we exploit this result to develop an unsupervised tail estimation approach based on the maximization of the profile likelihood function. Monte Carlo experiments and two empirical applications to the size of US metropolitan areas and of firms in an Italian district confirm that the proposed method works well and outperforms two commonly used techniques. Simulation results are available in an online supplementary appendix.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixtures of log-normal distributions in the mid-scale range of firm-size variables;Evolutionary and Institutional Economics Review;2024-04-23

2. Unsupervised tail modeling via noisy cross‐entropy minimization;Applied Stochastic Models in Business and Industry;2024-03-26

3. Measuring the Risk of Vulnerabilities Exploitation;AppliedMath;2023-12-24

4. Unsupervised mixture estimation via approximate maximum likelihood based on the Cramér - von Mises distance;Computational Statistics & Data Analysis;2023-09

5. LNPar: Estimation and Testing for a Lognormal-Pareto Mixture;CRAN: Contributed Packages;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3