Unsupervised tail modeling via noisy cross‐entropy minimization

Author:

Bee Marco1ORCID

Affiliation:

1. Department of Economics and Management University of Trento Trento Italy

Abstract

AbstractEstimation of dynamic mixture distributions is a difficult task, because the density contains an intractable normalizing constant. To overcome this difficulty, we develop an approach that maximizes, by means of the cross‐entropy method, a Monte Carlo approximation of the log‐likelihood function. The proposed noisy cross‐entropy approach is unsupervised, since it does not require the specification of a threshold between the distributions. Moreover, it bypasses the evaluation of the normalizing constant, combining good statistical properties with a modest computational burden. Both simulation‐based evidence and empirical applications suggest that noisy cross‐entropy estimation is comparable or preferable to existing methods in terms of statistical efficiency, but is less demanding from the computational point of view.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3