Measuring the Risk of Vulnerabilities Exploitation

Author:

Brilhante Maria de Fátima12ORCID,Pestana Dinis234ORCID,Pestana Pedro56ORCID,Rocha Maria Luísa78ORCID

Affiliation:

1. Faculdade de Ciências e Tecnologia, Universidade dos Açores, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Portugal

2. Centro de Estatística e Aplicações, Universidade de Lisboa (CEAUL), Campo Grande, 1749-016 Lisboa, Portugal

3. Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

4. Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal

5. Departamento de Ciências e Tecnologia, Universidade Aberta, Rua Almirante Barroso 38, 1000-013 Lisboa, Portugal

6. Centro de Investigação em Ciência e Tecnologia das Artes (CITAR), Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal

7. Faculdade de Economia e Gestão, Universidade dos Açores, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Portugal

8. Centro de Estudos de Economia Aplicada do Atlântico (CEEAplA), Rua da Mãe de Deus, 9500-321 Ponta Delgada, Portugal

Abstract

Modeling the vulnerabilities lifecycle and exploitation frequency are at the core of security of networks evaluation. Pareto, Weibull, and log-normal models have been widely used to model the exploit and patch availability dates, the time to compromise a system, the time between compromises, and the exploitation volumes. Random samples (systematic and simple random sampling) of the time from publication to update of cybervulnerabilities disclosed in 2021 and in 2022 are analyzed to evaluate the goodness-of-fit of the traditional Pareto and log-normal laws. As censoring and thinning almost surely occur, other heavy-tailed distributions in the domain of attraction of extreme value or geo-extreme value laws are investigated as suitable alternatives. Goodness-of-fit tests, the Akaike information criterion (AIC), and the Vuong test, support the statistical choice of log-logistic, a geo-max stable law in the domain of attraction of the Fréchet model of maxima, with hyperexponential and general extreme value fittings as runners-up. Evidence that the data come from a mixture of differently stretched populations affects vulnerabilities scoring systems, specifically the common vulnerabilities scoring system (CVSS).

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3