Abstract
AbstractWe show that the fluctuations of the largest eigenvalue of a real symmetric or complex Hermitian Wigner matrix of size N converge to the Tracy–Widom laws at a rate $$O(N^{-1/3+\omega })$$
O
(
N
-
1
/
3
+
ω
)
, as N tends to infinity. For Wigner matrices this improves the previous rate $$O(N^{-2/9+\omega })$$
O
(
N
-
2
/
9
+
ω
)
obtained by Bourgade (J Eur Math Soc, 2021) for generalized Wigner matrices. Our result follows from a Green function comparison theorem, originally introduced by Erdős et al. (Adv Math 229(3):1435–1515, 2012) to prove edge universality, on a finer spectral parameter scale with improved error estimates. The proof relies on the continuous Green function flow induced by a matrix-valued Ornstein–Uhlenbeck process. Precise estimates on leading contributions from the third and fourth order moments of the matrix entries are obtained using iterative cumulant expansions and recursive comparisons for correlation functions, along with uniform convergence estimates for correlation kernels of the Gaussian invariant ensembles.
Funder
European Research Council
Vetenskapsrådet
Knut och Alice Wallenbergs Stiftelse
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献