Phase transition for the smallest eigenvalue of covariance matrices

Author:

Bao Zhigang,Lee Jaehun,Xu Xiaocong

Abstract

AbstractIn this paper, we study the smallest non-zero eigenvalue of the sample covariance matrices $$\mathcal {S}(Y)=YY^*$$ S ( Y ) = Y Y , where $$Y=(y_{ij})$$ Y = ( y ij ) is an $$M\times N$$ M × N matrix with iid mean 0 variance $$N^{-1}$$ N - 1 entries. We consider the regime $$M=M(N)$$ M = M ( N ) and $$M/N\rightarrow c_\infty \in \mathbb {R}{\setminus } \{1\}$$ M / N c R \ { 1 } as $$N\rightarrow \infty $$ N . It is known that for the extreme eigenvalues of Wigner matrices and the largest eigenvalue of $$\mathcal {S}(Y)$$ S ( Y ) , a weak 4th moment condition is necessary and sufficient for the Tracy–Widom law (Ding and Yang in Ann Appl Probab 28(3):1679–1738, 2018. https://doi.org/10.1214/17-AAP1341; Lee and Yin in Duke Math J 163(1):117–173, 2014. https://doi.org/10.1215/00127094-2414767). In this paper, we show that the Tracy–Widom law is more robust for the smallest eigenvalue of $$\mathcal {S}(Y)$$ S ( Y ) , by discovering a phase transition induced by the fatness of the tail of $$y_{ij}$$ y ij ’s. More specifically, we assume that $$y_{ij}$$ y ij is symmetrically distributed with tail probability $$\mathbb {P}(|\sqrt{N}y_{ij}|\ge x)\sim x^{-\alpha }$$ P ( | N y ij | x ) x - α when $$x\rightarrow \infty $$ x , for some $$\alpha \in (2,4)$$ α ( 2 , 4 ) . We show the following conclusions: (1) When $$\alpha >\frac{8}{3}$$ α > 8 3 , the smallest eigenvalue follows the Tracy–Widom law on scale $$N^{-\frac{2}{3}}$$ N - 2 3 ; (2) When $$2<\alpha <\frac{8}{3}$$ 2 < α < 8 3 , the smallest eigenvalue follows the Gaussian law on scale $$N^{-\frac{\alpha }{4}}$$ N - α 4 ; (3) When $$\alpha =\frac{8}{3}$$ α = 8 3 , the distribution is given by an interpolation between Tracy–Widom and Gaussian; (4) In case $$\alpha \le \frac{10}{3}$$ α 10 3 , in addition to the left edge of the MP law, a deterministic shift of order $$N^{1-\frac{\alpha }{2}}$$ N 1 - α 2 shall be subtracted from the smallest eigenvalue, in both the Tracy–Widom law and the Gaussian law. Overall speaking, our proof strategy is inspired by Aggarwal et al. (J Eur Math Soc 23(11):3707–3800, 2021. https://doi.org/10.4171/jems/1089) which is originally done for the bulk regime of the Lévy Wigner matrices. In addition to various technical complications arising from the bulk-to-edge extension, two ingredients are needed for our derivation: an intermediate left edge local law based on a simple but effective matrix minor argument, and a mesoscopic CLT for the linear spectral statistic with asymptotic expansion for its expectation.

Funder

National Natural Science Foundation of China

Research Grants Council (RGC) of Hong Kong

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3