1. Uri Abraham and Menachem Magidor. Cardinal arithmetic. Chapter 14 in this Handbook.
10.1007/978-1-4020-5764-9_15
.
2. Stewart Baldwin. Between strong and superstrong. The Journal of Symbolic Logic, 51(3):547–559, 1986.
3. James E. Baumgartner. Ineffability properties of cardinals. II. In Logic, Foundations of Mathematics and Computability Theory (Proc. Fifth Internat. Congr. Logic Methodology Philos. Sci., Univ. Western Ontario, London, ON, 1975), Part I, pages 87–1069. Reidel, Dordrecht, 1977.
4. Paul J. Cohen. The independence of the continuum hypothesis, I. Proceedings of the National Academy of Sciences USA, 50:1143–1148, 1963.
5. Paul J. Cohen. The independence of the continuum hypothesis, II. Proceedings of the National Academy of Sciences USA, 50:105–110, 1964.