Abstract
AbstractAnswering a question of Mitchell (Trans Am Math Soc 329(2):507–530, 1992) we show that a limit of accumulation points can be singular in $${\mathcal {K}}$$
K
. Some additional constructions are presented.
Funder
isf
Israel Science Foundation
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Ben-Neria, O., Gitik, M., Neeman, I., Unger, S.: On the powersets of singular cardinals in HOD. Proc. Am. Math. Soc. 148(4), 1777–1789 (2020)
2. Cummings, J.: Iterated forcing and elementary embeddings. In: Foreman, K. (ed.) Handbook of Set Theory, vol. 2, pp. 776–879. Springer, Berlin (2010)
3. Gitik, M.: Prikry type forcings. In: Foreman, K. (ed.) Handbook of Set Theory, vol. 2, pp. 1351–1447. Springer, Berlin (2010)
4. Gitik, M.: Changing cofinality and the nonstationary ideal. Israel J. Math. 56(3), 280–314 (1986)
5. Gitik, M.: The strength of the failure of the Singular Cardinal Hypothesis. Ann. Pure Appl. Logic 51, 215–240 (1991)