High-throughput dielectrophoretic filtration of sub-micron and micro particles in macroscopic porous materials

Author:

Lorenz Malte,Malangré Daniel,Du Fei,Baune Michael,Thöming Jorg,Pesch Georg R.

Abstract

AbstractState-of-the-art dielectrophoretic (DEP) separation techniques provide unique properties to separate particles from a liquid or particles with different properties such as material or morphology from each other. Such separators do not operate at throughput that is sufficient for a vast fraction of separation tasks. This limitation exists because high electric field gradients are required to drive the separation which are generated by electrode microstructures that limit the maximum channel size. Here, we investigate DEP filtration, a technique that uses open porous microstructures instead of microfluidic devices to easily increase the filter cross section and, therefore, also the processable throughput by several orders of magnitude. Previously, we used simple microfluidic porous structures to derive design rules predicting the influence of key parameters on DEP filtration in real complex porous filters. Here, we study in depth DEP filtration in microporous ceramics and underpin the previously postulated dependencies by a broad parameter study (Lorenz et al., 2019). We will further verify our previous claim that the main separation mechanism is indeed positive DEP trapping by showing that we can switch from positive to negative DEP trapping when we increase the electric conductivity of the suspension. Two clearly separated trapping mechanisms (positive and negative DEP trapping) at different conductivities can be observed, and the transition between them matches theoretical predictions. This lays the foundation for selective particle trapping, and the results are a major step towards DEP filtration at high throughput to solve existing separation problems such as scrap recovery or cell separation in liquid biopsy.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Wirtschaft und Energie

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3