Compensation of capacitive currents in high-throughput dielectrophoretic separators

Author:

Giesler Jasper,Weirauch Laura,Thöming Jorg,Baune Michael

Abstract

AbstractSeparation and classification are important operations in particle technology, but they are still limited in terms of suspended particles in the micrometer and nanometer size-range. Electrical fields can be beneficial for sorting such particles according to material properties. A mechanism based on strong and inhomogeneous fields is dielectrophoresis (DEP). It can be used to separate microparticles according to their material properties, such as conductivity and permittivity, by selectively trapping one particle type while the other can pass the separator. Conventional DEP-separators show either a limitation in throughput or frequency bandwidth. A low throughput limits the economical feasibility in many cases. A lower frequency bandwidth limits the variety of materials that can be sorted by DEP. To separate semiconducting particles from a mixture containing particles with higher conductivity according to their material, high frequencies are required. Possible applications are the separation of semiconducting and metallic carbon nanotubes or the separation of carbon-coated lithium iron phosphate particles from graphite in the recycling process of spent lithium-ion batteries. In this publication, we aim to display how to tune the electrical impedance of a high-throughput DEP separator based on custom-designed printed circuit boards to increase its frequency bandwidth. By adding inductors to the electrical circuit, we were able to increase the frequency bandwidth from 500 kHz to over 11 MHz. The experiments in this study act as proof-of-principle. Furthermore, a non-deterministic way to increase the impedance of the setup is shown, yielding a maximum frequency of 39.16 MHz.

Funder

Universität Bremen

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3