Electrokinetic particle trapping in microfluidic wells using conductive nanofiber mats

Author:

West J. Hunter1ORCID,Mondal Tonoy K.1,Williams Stuart J.1ORCID

Affiliation:

1. Department of Mechanical Engineering University of Louisville Louisville Kentucky USA

Abstract

AbstractThe frequency dependence of electrokinetic particle trapping using large‐area (>mm2) conductive carbon nanofiber (CNF) mat electrodes is investigated. The fibers provide nanoscale geometric features for the generation of high electric field gradients, which is necessary for particle trapping via dielectrophoresis (DEP). A device was fabricated with an array of microfluidic wells for repeated experiments; each well included a CNF mat electrode opposing an aluminum electrode. Fluorescent microspheres (1 µm) were trapped at various electric field frequencies between 30 kHz and 1 MHz. Digital images of each well were analyzed to quantify particle trapping. DEP trapping by the CNF mats was greater at all tested frequencies than that of the control of no applied field, and the greatest trapping was observed at a frequency of 600 kHz, where electrothermal flow is more significantly weakened than DEP. Theoretical analysis and measured impedance spectra indicate that this result was due to a combination of the frequency dependence of DEP and capacitive behavior of the well‐based device.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3