Computational Thinking in the Primary Mathematics Classroom: a Systematic Review

Author:

Nordby Siri KroghORCID,Bjerke Annette Hessen,Mifsud Louise

Abstract

AbstractComputational thinking (CT) has acquired the status of a necessary 21st-century skill and is currently being introduced in school curricula around the world, despite a lack of consensus about what it entails. The aims of this review are to provide an overview of the existing literature on CT activities in primary mathematics education, and to articulate how it is integrated into the teaching and learning of primary mathematics. This systematic review presents and analyses the findings of 10 empirical studies, revealing a recent increased focus on the inclusion of CT in primary mathematics classrooms, as most studies are published around 2020. Our findings indicate two categories of such activities, one focusing on skills (such as mainly sequencing, looping, conditionals, debugging, decomposition, and abstraction) and one on process-oriented activities (communication, creativity, exploration, and engagement). Furthermore, we found that, while there are studies reporting on mathematics being taught directly through CT activities (full integration), in most studies, the mathematics content was emphasised, with CT built in as a way for students to demonstrate their understanding of mathematics concepts (partial integration). This review identifies current gaps in the field and the need to investigate further such process-oriented activities, the use of these activities in accelerated mathematics, and the need for different methodological approaches in primary mathematics.

Funder

Høgskolen i Oslo og Akershus

OsloMet - Oslo Metropolitan University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference35 articles.

1. Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future of Learning Group Publication, 5(3), 438–449.

2. Aho, A. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832–835.

3. Barcelos, T., Muñoz-Soto, R., Villarroel, R., Merino, E., & Silveira, I. (2018). Mathematics learning through computational thinking activities: A systematic literature review. Journal of Universal Computer Science, 24(7), 815–845.

4. Bartolini Bussi, M., &Baccaglini-Frank, A. (2015). Geometry in early years: Sowing seeds for a mathematical definition of squares and rectangles. ZDM: The International Journal on Mathematics Education, 47(3), 391–405.

5. Benton, L., Saunders, P., Kalas, I., Hoyles, C., & Noss, R. (2018). Designing for learning mathematics through programming: A case study of pupils engaging with place value. International Journal of Child-Computer Interaction, 16, 68–76.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3